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We can best solve these data hazards

Time (in clock cycles)
CC 1 CcCc2 CC3 CC4 CC5h cCe6 cCc7 ccs CC9

By stalling. P
execution
order
(in instructions)

By forwa rding. w $2, 20($1) IM ~H—DFReg :D—

and $4, $2, $5 IM — —“Reg

By combining forwards and
stalls. or $8, 52, $6 M =

-1
o

1 . add $9, $4, $2 il Re_i
By doing something else. Tw  $2,20(81) o HRes

and $4,%2,%5 = i i
S AR e i i} e ID i s
add $9,%4,%2 . 9

st $1,%6,%7




Load-Use Data Hazard
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How to Stall the Pipeline
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e Detect hazard in ID stage using Hazard detection unit
— Check if instruction in EX stage is load with destination rs or rt



How StaII the Pipeline
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How to Stall the Pipeline

/Tayd\ ID/EX.MemRead
detection |«
A

B EX/MEM
M = \WB LI\iEMNVB
x| - M WB{—

* Prevent update of PC
and IF/ID register

— Instruction with
dependency is

IF/DWrite

PCWrite

T
W)

y

)

]

=1

Y 8
o

ALUP~

[ Instruction

Y
xc=s

memory

decoded again &

— Following instruction
is fetched again D Regiteris

Registers
Data -
memory J

G r(uz')Tc#:é)

IF/ID.RegisterRt _
IF/ID.RegisterRt -~ Rt

— 1-cycle stall allows D RegiterRd ~
ID/EX.RegisterRt — ——‘

MEM to read data for

Tw



After we add the stall
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Stall/Bubble in the Pipeline
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Stall/Bubble in the Pipeline
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Questions about Data Hazards?
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Consider the code
addi Ss0, SsO0, 4

1w St0, 0($s0)
sub Stl, St2, St2
add St0, $t0, stl

Does this code require a forward, a stall, both, or neither?

A. Forward
B. Stall
C. Both
D. Neither



Stalls and Performance

 Stalls reduce performance

— But are required to get correct results

* Can rearrange code to avoid hazards and stalls



Dealing with Data Hazards

* As an ISA designer, you have a choice between reordering

instructions in software or hardware. Which might you choose
and why?

A Software Compilers have a large window of instructions available to do reordering to
eliminate hazards

B Software Detecting data hazards in hardware can be difficult and expensive

C Hardware Hardware knows at runtime the actual dependencies and can exploit that
knowledge for better reordering

D Hardware Exposing the number of required stalls violates the abstraction between hardware
and software
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Intel Chip launched in 2001 that used the
VLIW (Very Long Instruction Word) ISA

This ISA was designed to do all code
reordering at compile time, rather than at
runtime

Designed for servers/high-performance,
goal eventually desktop market

Performance was disappointing, especially
when emulating x86

“Itanium’s promise ended up sunken by a
lack of legacy 32-bit support and difficulties
in working with the architecture for writing
and maintaining software” - Techspot



Stalling the pipeline
Given this pipeline where branches are resolved by the ALU — let’s assume we stall

until we know the branch outcome. How many cycles will you lose per branch?
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Stalling for Branch Hazards
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Stalling for Branch Hazards

* Seems wasteful, particularly when the branch isn’t taken.
* Makes all branches cost 4 cycles.

 What if we just assume the branch isn’t taken?



Assume Branch Not Taken
* works pretty well when you're right
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Assume Branch Not Taken

* same performance as stalling when you’re

wrong
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Reading

e Next lecture: Control Hazards
— Section 5.9



	Slide 1: CSCI 210: Computer Architecture Lecture 30: Data Hazards
	Slide 7: Datapath with Forwarding
	Slide 10: We can best solve these data hazards
	Slide 11: Load-Use Data Hazard
	Slide 12: How to Stall the Pipeline
	Slide 13: How to Stall the Pipeline
	Slide 14: How to Stall the Pipeline
	Slide 15: After we add the stall
	Slide 16: Stall/Bubble in the Pipeline
	Slide 17: Stall/Bubble in the Pipeline
	Slide 18: Questions about Data Hazards?
	Slide 19: Consider the code addi  $s0, $s0, 4 lw   $t0, 0($s0) sub   $t1, $t2, $t2 add   $t0, $t0, $t1 Does this code require a forward, a stall, both, or neither?
	Slide 20: Stalls and Performance
	Slide 21: Dealing with Data Hazards
	Slide 22: CS History: Intel Itanium Chip
	Slide 23
	Slide 24: Stalling for Branch Hazards
	Slide 25: Stalling for Branch Hazards
	Slide 26: Assume Branch Not Taken
	Slide 27: Assume Branch Not Taken
	Slide 28: Reading

