CSCI 210: Computer Architecture
Lecture 30: Data Hazards

Stephen Checkoway
Slides from Cynthia Taylor

Instruction
memory

Datapath with Forwarding

IF/ID

ID/EX

— Control |_'->

WB

M

.

EX

| Instruction

Registers

\

EX/MEM

»\WB MEM/WB

> M = \WBI—
ALUF— - >

Data
memory

IF/ID.RegisterRd

IF/ID.RegisterRs Rs
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt | [Rt]

| [Rd

Y

EX/MEM.RegisterRd

-
o

MEM/WB.RegisterRd
4

xc=

We can best solve these data hazards

Time (in clock cycles)
CC 1 CcCc2 CC3 CC4 CC5h cCe6 cCc7 ccs CC9

By stalling. P
execution
order
(in instructions)

By forwa rding. w $2, 20($1) IM ~H—DFReg :D—

and $4, $2, $5 IM — —“Reg

By combining forwards and
stalls. or $8, 52, $6 M =

-1
o

1 . add $9, $4, $2 il Re_i
By doing something else. Tw $2,20(81) o HRes

and $4,%2,%5 = i i
S AR e i i} e ID i s
add $9,%4,%2 . 9

st $1,%6,%7

Load-Use Data Hazard

Time (in clock cycles)
CC1 CcCc2 CC3 CC4 CC5 CCe6 CC7 CCs8 CC9

Program
execution
order

(in instructions)

Iw $2, 20($1) IM

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

r— — -1
slt $1, $6, $7 IM — —=Reg DM Reg!

How to Stall the Pipeline

/Tayd\ ID/EX.MemRead
detection -
L unit
-— A
% ID/EX
g WB EX/MEM
Control ~|VB
. ontro i L L“ﬁlﬂ/WB
= IF/ID ° EX ’ iy
- I EX [i
c
ksl i
v : Registers ™ ~IM
E ALUP u
P Instruction =
R E X
memory

Data |
memory J

IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt Rt
IF/ID.RegisterRd - Rd.

— ID/EX.RegisterRt —

[SORtc oG

e Detect hazard in ID stage using Hazard detection unit
— Check if instruction in EX stage is load with destination rs or rt

How StaII the Pipeline

ID/EX

IF/DWrite

"B EX/MEM
Control M > E
0 =~ M

PCWrite
T
o

Registers

ALUp

T |

OI-
3
=
38
sz

1

| Instruct

IF/ID.RegisterRs

IF/ID.RegisterRt _
IF/ID.RegisterRt Rt

IF/ID.RegisterRd - Rd,
— ID/EX.RegisterRt —

’ xc =) ’—»(xs:g’)’*(xs:g')

Force control values in ID/EX register to O
— EX, MEM and WB do nop (no-operation)

How to Stall the Pipeline

/Tayd\ ID/EX.MemRead
detection |«
A

B EX/MEM
M = \WB LI\iEMNVB
x| - M WB{—

* Prevent update of PC
and IF/ID register

— Instruction with
dependency is

IF/DWrite

PCWrite

T
W)

y

)

]

=1

Y 8
o

ALUP~

[Instruction

Y
xc=s

memory

decoded again &

— Following instruction
is fetched again D Regiteris

Registers
Data -
memory J

G r(uz')Tc#:é)

IF/ID.RegisterRt _
IF/ID.RegisterRt -~ Rt

— 1-cycle stall allows D RegiterRd ~
ID/EX.RegisterRt — ——‘

MEM to read data for

Tw

After we add the stall

Time (in clock cycles)

A_ Everyth|ng Works W|th our CCi cc2 CC3 CC4 OC5 GG CC7 GC8 CC8 CC 10
. . . Program
existing forwarding oxecun

(in instructions)

w $2, 20($1) @—H—ﬁﬂ%[

r1 bubble

B. We need to forward between [EES
the register files to solve the 2" | '
hazard

or $8, $2, $6
add $9, $4, $2

C. We need to do something else

Stall/Bubble in the Pipeline

Program
execution
order

(in instructions)

lw $2, 20($1)

and becomes nop

and $4, $2, $5

or $8, $2, $6

| add $9, $4, $2

CC1

Time (in clock cycles)
ccz2

CC5

cCs8

DM

CC9 CC10

He_g:
—

Stall/Bubble in the Pipeline

Time (in clock cycles)
CC3

CC1
Program
execution
order
(in instructions)
lw $2, 20($1) IM

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2

CcC2

Red

>

CC4

i

U

CC5

|
g

IM

CCé6

bubble

CC8

s

DM

o

CC9 CC10

Reg

—

Questions about Data Hazards?

PCWrite

/Tayd\ ID/EX.MemRead
detection I

S
2 Y
% ID/EX
C WB EX/MEM
»(Control M > \WB MEM/WB
IF{ID 0 EX - M L’WB—
2
> > M
>~ U >
5 - x
5 Registers N
S ' > -1 >
7 N ALU
Instruction = "M
memory ~ Data >
> u > memory
X
IF/ID.RegisterRs - -
IF/ID.ReqisterRt .
IF/ID.RegisterBt . Bt M
IF/ID.RegisterRd g R, | - g
ID/EX.RegisterRt J
23 Forwarding
t ~ i -
_\ unit /: -

xecs

Consider the code
addi Ss0, SsO0, 4

1w St0, 0($s0)
sub Stl, St2, St2
add St0, $t0, stl

Does this code require a forward, a stall, both, or neither?

A. Forward
B. Stall
C. Both
D. Neither

Stalls and Performance

 Stalls reduce performance

— But are required to get correct results

* Can rearrange code to avoid hazards and stalls

Dealing with Data Hazards

* As an ISA designer, you have a choice between reordering

instructions in software or hardware. Which might you choose
and why?

A Software Compilers have a large window of instructions available to do reordering to
eliminate hazards

B Software Detecting data hazards in hardware can be difficult and expensive

C Hardware Hardware knows at runtime the actual dependencies and can exploit that
knowledge for better reordering

D Hardware Exposing the number of required stalls violates the abstraction between hardware
and software

40

35

30

25

20

15

10

5

0‘ T ™ L T T T T T T 1
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

CS History: Intel Itanium Chip

ltanium Sales Forecasts

Servers, $Bn/yr

1997-06
™\, 1998-06
™\, 1999-08

2000-06
\, 2001-06

\, 2001-10
\, 2002-03
\. 2003-04

\, 2005-10
\, Actual

[==

Arch dude, CC BY-SA, via Wikimedia Commons

Intel Chip launched in 2001 that used the
VLIW (Very Long Instruction Word) ISA

This ISA was designed to do all code
reordering at compile time, rather than at
runtime

Designed for servers/high-performance,
goal eventually desktop market

Performance was disappointing, especially
when emulating x86

“Itanium’s promise ended up sunken by a
lack of legacy 32-bit support and difficulties
in working with the architecture for writing
and maintaining software” - Techspot

Stalling the pipeline
Given this pipeline where branches are resolved by the ALU — let’s assume we stall

until we know the branch outcome. How many cycles will you lose per branch?

0
M
u
: e
1)
We LhalEMN\.’B
IFID M WB
Add result
s Shift Branch
left 2 | \ z
« \LUSF | S5
L/ 2
g Read 2
PCltms| Address g register 1 Read = E
S I t. I = Read data 1 &
. < register 2 I =
e eC |On CyC es Inrs:;lﬂon > g Registers Read
v Wite data 2 Address Read | 1
register Data data M
Write memary M
A O | data C)'(
Wirite
data
B 1 Instruction
16 32 6
[15 0 Sign \ ALU 1
Al MemRead
N Tlextend N “leontrol emrea
C 2 Instruction
[20 18]
0 ALUOp
D 3 u
Instruction u
15 1] *
1
E 4 - D _ _

Stalling for Branch Hazards

cC1 CC2 CC3 CCa CC5 CC6 CC7 CC8

}

beq S4, SO, there| IM

Reg

Reg > DM
and $12, 52, S5 \ IM |——| Reg ; DM

or ... M Reg >\k

add ... M Reg 97

SW ...

Stalling for Branch Hazards

* Seems wasteful, particularly when the branch isn’t taken.
* Makes all branches cost 4 cycles.

 What if we just assume the branch isn’t taken?

Assume Branch Not Taken
* works pretty well when you're right

CcC1 cC2 CC3 CC4 CC5 CCé6 CC7 CC8

beq S4, SO, there| IM Reg DM Reg

and $12, $2, $5 IM |——| Reg % DM Reg

L/

or .. IM Reg \\97 DM Reg
add ... IM \Reg 9 DM

w IM Reg 97

Assume Branch Not Taken

* same performance as stalling when you’re

wrong
cc1 CC2 CCeé CC7 CC8
beq S4, SO, there| IM Reg
and $12, $2, $5 M
or ...
add ...

Reg ;'7

there: sub $12, $4, S2

Reading

e Next lecture: Control Hazards
— Section 5.9

	Slide 1: CSCI 210: Computer Architecture Lecture 30: Data Hazards
	Slide 7: Datapath with Forwarding
	Slide 10: We can best solve these data hazards
	Slide 11: Load-Use Data Hazard
	Slide 12: How to Stall the Pipeline
	Slide 13: How to Stall the Pipeline
	Slide 14: How to Stall the Pipeline
	Slide 15: After we add the stall
	Slide 16: Stall/Bubble in the Pipeline
	Slide 17: Stall/Bubble in the Pipeline
	Slide 18: Questions about Data Hazards?
	Slide 19: Consider the code addi $s0, $s0, 4 lw $t0, 0($s0) sub $t1, $t2, $t2 add $t0, $t0, $t1 Does this code require a forward, a stall, both, or neither?
	Slide 20: Stalls and Performance
	Slide 21: Dealing with Data Hazards
	Slide 22: CS History: Intel Itanium Chip
	Slide 23
	Slide 24: Stalling for Branch Hazards
	Slide 25: Stalling for Branch Hazards
	Slide 26: Assume Branch Not Taken
	Slide 27: Assume Branch Not Taken
	Slide 28: Reading

